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The annotated briefing titled Integrated HSI-System Model Demonstration* demonstrated that 
different mission performance estimates can be obtained from a traditional constructive 
simulation used to support acquisition trade-studies versus an integrated simulation environment 
in which a detailed model of a human operator** is combined with the traditional constructive 
simulation.  In response to those findings, the U. S. Coast Guard (USCG) Research & 
Development Center (RDC) developed this briefing to share this information with the Coast 
Guard acquisition community to underscore the importance of using human performance 
modeling in the acquisition process to provide a better representation of the total system under 
consideration.  This briefing presents the information in the context of a notional acquisition 
situation and illustrates how human performance modeling can enhance acquisition decision-
making.   
 
*Available from the USCG RDC (RDC UDI 1033, Dec. 2010)  
 
**This type of model is referred to as a human systems integration (HSI) model or, alternatively, 
as a human performance model (HPM).  
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The work reported in this briefing is a follow-on to the Integrated HSI-System Model Demonstration 
referenced above.  As part of that prior work, a simulation environment was created that represented an 
unmanned aerial system (UAS) conducting a smuggling surveillance mission in the Florida Straits.  One 
component of the simulation was the Coast Guard Tactical Modeling Environment (CGTME), which 
modeled the UAS platform and the surface traffic.  Another component was an IMproved Performance 
Research INtegration Tool (IMPRINT) human performance model (HPM) that embodied a Sensor 
System Operator (SSO) employing and managing the sensors on the UAS.  The IMPRINT SSO model 
was developed with reference to current-generation sensor suites and their associated perceptual, 
cognitive, and psychomotor performance requirements.  As a complete UAS representation in a 
complex, realistic  mission environment, the Integrated HSI-System Model Demonstration simulation 
environment provided a low-cost, low-risk setting for expanding the demonstration of human 
performance modeling in the acquisition process.   
 

In the new work reported here, the original IMPRINT SSO model was modified to reflect an advanced 
sensor system interface concept.  Mission performance obtained in the integrated IMPRINT-CGTME 
simulation using the new sensor system interface was compared with mission performance predicted by 
the original model.  The objective was to demonstrate that by representing the performance 
requirements associated with specific user interface (UI) concepts, HPMs can provide acquisition teams 
with insight into the mission performance potential of the alternative UI.  Equally important, they also 
can provide insight into why differences are obtained.   
 

In addition to comparing SSO UI alternatives, a demonstration and assessment of two alternative 
schemes for prioritizing vessels to be classified and identified are provided.  The purpose of this 
demonstration is two-fold.  First, it shows how human performance modeling can be used to implement 
the human side of tactics and  concepts of operations (CONOPs).  Generally, the information-gathering, 
processing, and decision-making required to execute tactics and elements of CONOPs are performed 
by people.  Human performance modeling can represent these processes in the context of other human 
performance requirements associated with system operation and provide insight into the impacts on 
overall operator performance.  Also, to the extent that tactics and CONOPs represent elemental 
components of the overall system, the assessment of prioritization schemes illustrates how human 
performance modeling  can be used to isolate individual elements of the UI or other performance 
demands and adjust them to generate maximum mission performance. 
 

The slides that follow outline the development of an alternative SSO UI and prioritization scheme, 
compare the results obtained under the new SSO UI with those from the original SSO model, and ends 
with a discussion of lessons learned.  There are two "threads" in the discussion. One is more technical, 
presenting the results of the current work in the context of the broader set of studies in which factors 
related to the application of human performance modeling are manipulated systematically and the 
results are compared across test conditions. The second thread is the notional acquisition problem.  
This thread is presented as a story that tracks a fictional Program Manager’s (PM’s) use of modeling 
and simulation to maximize total system performance for a UAS platform being considered by the 
USCG.  
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This slide frames a notional acquisition situation. The USCG is exploring the use of UAS as a 
means of increasing its capacity to conduct surveillance.  Among other factors, the long 
endurance capabilities of UAS coupled with the possibility of using non-rated pilots makes 
assimilation of UAS into the USCG fleet an attractive option.  The organization tasked with 
exploring the acquisition of UAS currently is evaluating the use of Medium Altitude Long 
Endurance (MALE) platforms such as the General Atomics Predator.  A fairly standard sensor 
suite composed of current-generation, commercial-off-the-shelf (COTS) products is being 
considered.  These include a maritime radar with Plan Position Indicator (PPI), Maritime Moving 
Target Indicator (MMTI), and  Inverse Synthetic Aperture Radar (ISAR) modes.  It also includes 
electro-optical (EO) and infrared (IR) sensors that provide streaming video and imagery. 
 
Initial testing of a candidate UAS conducting a smuggling surveillance mission in the Florida 
Straits was performed using the CGTME.  CGTME is described in more detail later in the 
presentation, but suffice it to say here that it is the USCG’s primary constructive (computational) 
simulation environment for exploring new system concepts, evolving existing system designs, 
assessing new CONOPs, etc.  Within the context of this acquisition story, results of the initial 
testing of the candidate UAS with CGTME suggested the system could meet mission 
performance objectives.  In a 4-hour, 250-vessel scenario, 100% of the threat (smuggling) 
vessels were detected and identified. 
 
Though encouraged, the PM knew that, like most constructive mission simulation environments, 
CGTME focused more on representing the essential performance attributes of the hardware and 
software components of the UAS.  The PM also knew that the SSO played an enormous role in 
mission success.  While CGTME did provide some basic representation of the SSO, it was at a 
very high level.  The PM wanted a simulation that provided a detailed representation of the SSO 
that was coupled with the CGTME UAS platform.  The aid of the USCG RDC was enlisted.  The 
RDC used the IMPRINT human performance modeling environment to create an SSO model 
that was integrated into the CGTME and controlled the UAS sensors.  The results produced by 
this simulation were much different from the first.  Only 67% of the threat vessels were detected 
and identified.  These results were not acceptable. 
 
Exploration of the detailed results of the initial tests revealed that the target detection, 
classification, and identification process took a good bit of time and the simulated SSO could not 
process all targets that fell within the sensor footprints before they exited the footprints.  There 
were two ways to solve the problem.  One was to get sensors with longer ranges.  These would 
provide the SSO model with more time to process targets; unfortunately these sensors were 
found to be prohibitively expensive.  The other potential solution was to find a way to help the 
simulated SSO execute the process faster. The PM then directed the acquisition team to 
consider alternative interface concepts that could improve SSO performance to acceptable 
levels.   
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The purpose of the prior Integrated HSI-System Model Demonstration was to model a USCG 
operation using a stand-alone constructive simulation (CGTME) and then to compare its results 
with those generated by a simulation that integrated a human performance model (IMPRINT) 
with the constructive model.  This section first briefly reviews the simulation developed under that 
task and the Florida Straits scenario that drove testing of both the CGTME in a stand-alone 
mode and the integrated IMPRINT-CGTME simulation.  It then discusses the results of that 
testing.  In the notional acquisition problem description, the work described in this section 
pertains to the two test events already conducted.  For complete details on the prior study, the 
reader is referred to the annotated briefing titled Integrated HSI-System Model Demonstration 
(RDC UDI 1033, Dec. 2010).   
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The CGTME is a customized interface to control a specific simulation running on the General 
Campaign Analysis Model (GCAM) engine.  It was developed by Systems Planning and Analysis 
(SPA) for the USCG RDC and has been accredited by the RDC.  It can represent a broad array 
of USCG systems singly, or as integrated mission assets, in complex mission scenarios 
throughout the range of operational environments.  Platform, sensor, communications, CONOPs, 
and other system components are modeled separately so that entities can be reconfigured 
readily to represent new or alternative capabilities.  Operations can be represented at the 
engagement, mission, and USCG Sector levels.  Within the simulation interface, only certain 
parameters can be modified such as platform performance values, number of entities within the 
simulation, high-level tactics options, motion specifications, etc.  Other modifications must be 
implemented by the RDC.  This ensures that a stable, controlled software baseline is provided to 
users.  The CONOPs and behavior within the simulation have been developed over the past 
decade with the input from the USCG RDC.   
 
It should be stressed that the results from CGTME should not be regarded as “absolute” 
predictions of system performance.  Not every aspect of the real system can or should be taken 
into account (e.g., ship maintenance, crew scheduling, shipboard accidents, real-time weather, 
equipment malfunction/misuse, …).  Critical system aspects, as determined by subject matter 
experts (SMEs), are selected so that the model will properly represent the system and will react 
appropriately given changes to the input set. The key use of the CGTME is to compare output 
metrics between various scenarios. This enables an analyst to identify which performance or 
CONOPs changes are likely to have a significant impact on measures of effectiveness (MOEs) 
such as maritime domain awareness (MDA) and number of threat interdictions.  The key 
consideration when evaluating CGTME results is the relative MOE values across test conditions 
as opposed to the absolute MOE value for each condition.  The magnitude of the relative 
difference is the indicator of the impact of a condition and its associated actors. 
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This slide lists the different components of the CGTME and summarizes how they are used in 
the UAS simulation described in this briefing.  

 

• Geographic Setup:  This component allows users to construct the scenario to be exercised in 
a simulation event.  Users are provided with maps of the geographical area in which the 
scenario occurs and are able to interactively specify, observe, and adjust the vessel types, 
routes, and behaviors to be exhibited in the scenario.  This component was used to create 
the Florida Straits scenario used in the UAS studies.   

• Blue Force – UAS capabilities and CONOPs:  As noted above, CGTME can represent an 
array of USCG platforms.  For the purposes of these studies, a single UAS entity was 
provided.  Performance parameters were specified that were consistent with a Medium 
Altitude Long Endurance (MALE) UAS.  A CONOP associated with a surveillance, detection, 
classification, identification, and prosecution (SDCIP)-based scheme was implemented that 
included a ladder search pattern.  The UAS flies a fixed route, so representation of a pilot is 
not required. 

• Legitimate (White) Traffic:  “Legitimate vessels” are commercial and private vessels of a wide 
variety of types.  These range from supertankers to freighters to container ships to 
commercial fishing boats, to yachts, sail boats, and cruisers.  CGTME provides 
representations of all of these types by allowing vessel entities to be parameterized to match 
the performance and behaviors of a vessel type.  The majority of the vessels in the Florida 
Straits scenario were Legitimate Traffic. 

• Threat (Red) Traffic:   In the CGTME Florida Straits scenario, threat targets were Go-Fasts 
(high-speed, small boats carrying drugs) and Chug-Chugs (slow-moving, small vessels 
carrying illegal immigrants).  Six (6) threat vessels (three Go-Fasts and three Chug-Chugs) 
were used in each scenario. 

• Sensor Models:  Sensor models were used that represented the radar and EO/IR sensors 
expected to be on the UAS.  It also included a model of an Automatic Identification System 
(AIS) unit that can receive and display information from vessels carrying AIS.  When CGTME 
is in a stand-alone mode, the sensors are controlled by logic in the Sensor Models 
component that represents SSO decision-making at a high level.  In the integrated IMPRINT-
CGTME simulation mode, the sensors are controlled by the IMPRINT SSO model. 

• MOE Formulation and Recording:  Post-processing tools have been developed for computing 
MOEs that assess UAS mission outcomes and supporting functions.  (IMPRINT provides 
reports that describe SSO model performance.) 
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This slide shows a graphic depiction of the Florida Straits scenario.  It shows vessel routes and 
the UAS ladder search route.  Two scenario sizes were employed:  150 vessels and 250 
vessels.  All scenarios were approximately 4 hours in duration.  The paths going from Cuba to 
Florida are the potential threat paths.  The paths that threat and benign traffic take during the 
simulation are weighted by the user (i.e., different paths are assigned different probabilities) and 
randomly chosen during the simulation.  Where a vessel starts along a path depends upon when 
the vessel is generated in the scenario.  For vessels that are generated at scenario start-up, the 
simulation randomly sets a start point some distance along the chosen path and the vessel starts 
there.  Traffic generated after start-up begin movement from the first point on their assigned path 
and follow the path to its end.  
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For the stand-alone CGTME test, 10 data collection runs of the UAS Florida Straits smuggling 
scenario were conducted.  Measures of effectiveness were computed and the results are presented 
on the slide that follows. 
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This slide presents the mission performance results obtained when the CGTME was used in a 
stand-alone mode to assess the potential effectiveness of the UAS in the smuggling surveillance 
mission.  As noted earlier, the UAS detected and identified all threat vessels.  Across all other 
vessels presented in scenario runs, the UAS detected about 63%.  Further analysis revealed that 
only about 63% of all vessels ever fell within a sensor footprint.  This is a product of the scenario 
design and UAS flight along the search route.  The UAS never got within sensor range of some 
vessels.  But, of those vessels that did get within sensor range, all were detected.  Of the 
detected vessels all were classified and about 90% were identified. (Consequently, only about 
10% of the detected vessels only were classified.) 
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The stand-alone CGTME model includes most of the important elements of the UAS system:  
the UAV, its sensors, flight path, and tactics, and the positions and movements of vessel traffic 
in the area under surveillance.  But one important element is missing:  the UAV Sensor System 
Operator (SSO).  In order to model human performance, another modeling environment was 
needed:  the  IMproved Performance Research INtegration Tool (IMPRINT). 
 
IMPRINT was developed by the U.S. Army and is now used by a variety of military services and 
civilian communities.  A task network methodology is used to provide “dynamic, stochastic, 
discrete event networks” that represent human actions and even perceptions and decisions.  
Both time and accuracy attributes can be specified for each behavioral event.  The events 
within a task network are connected via procedural pathways that can vary based on both 
probabilities and decision logic, such that trial-to-trial outcomes from the same model may be 
different (i.e., performance of modeled operators will vary just like that of live operators).  
 
Much of the time and accuracy data come from libraries within IMPRINT which contain the 
results of experiments on various attributes of human performance (such as how much time it 
takes to turn a knob or move a mouse; how manual and cognitive performance degrade under 
extreme temperatures; how training affects performance; etc.).  For tasks which are not 
represented in its libraries, the user can input performance data.   
 
IMPRINT models can be created to represent a wide range of individual and team performance 
situations and can be used to address a number of human-system integration issues.  These 
include function allocation among team members and between people and machines.  It also 
includes assessment of workload and situation awareness issues, specification of human 
performance requirements, and development of procedures and tactics.  IMPRINT produces a 
variety of reports that provides the objective data needed to support HSI decision-making.  
Custom data collection can be generated when needed.  
 
A unique feature of IMPRINT is its ability to connect to other models and simulations.  This 
means that an IMPRINT model of an operator or operator team can be connected to a 
simulation of the platform they operate and the HPM can “sail,” “fly,” “drive,” etc. that platform in 
a dynamic mission simulation that provides all of the entities and events with which the operator 
and system interact.  This allows performance of the IMPRINT HPM to be driven by attributes 
and characteristics of the platform that are impacted dynamically by the mission simulation.  
The result is a clear understanding of the demands the system and mission environment place 
upon the operator.  This knowledge provides a basis for modifying the system design, 
CONOPS, tactics, etc., to better accommodate the operator in the system.   
 
The next slide shows the architecture used to integrate IMPRINT with CGTME.   
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The second test event in our notional acquisition problem involved integrating an IMPRINT SSO 
model into the CGTME simulation.  This would allow the CGTME UAS sensors to be controlled 
by a much more detailed SSO representation than was provided within the CGTME.  This slide 
depicts the architecture implemented to accomplish the integration. 
 
The IMPRINT SSO model implements the full range of SSO tasks and activities (see next slide).  
Like a real SSO, the IMPRINT model is designed to obtain mission situation information from the 
UAS sensors and other sources (e.g., AIS), make decisions about what to do next based on that 
information (e.g., which target to examine, which sensor to use), and then act upon the sensor 
controls and other user interface components to implement those decisions.  The CGTME UAS 
& Mission Entity Environment is both the source of information needed by the IMPRINT SSO 
model (e.g., information on a sensor display) and the means to implement decisions (e.g., 
control sensors).  Consequently, the IMPRINT SSO model needs a means to communicate with 
the CGTME UAS & Mission Entity Environment.   
 
The IMPRINT-CGTME Link is a shared plug-in through which the IMPRINT SSO model and 
CGTME UAS & Mission Entity Environment communicate. The plug-in passes data to IMPRINT 
from CGTME that pertain to vessel type, position, heading, etc. (information that would be 
presented on the sensor displays of the UAS), where it is “perceived” by the SSO model.  The 
SSO model processes that information and selects a course of action.  The action is 
implemented by passing data back through the plug-in to the CGTME Sensor Models 
component to select a specific sensor, set the mode, and adjust the aimpoint to enable 
detection, classification, and identification of vessels.  
 
The result is an integrated simulation in which the three main components (the scenario as 
defined by vessel types and routes, the UAS platform and sensors, and the SSO model) can all 
be manipulated somewhat independently.  For example, the number, types, and densities of 
vessels can be changed without modifying the UAS entity and SSO models.  This would allow 
analysts to study the effectiveness of a UAS/SSO capability combination under different track 
loads.  Similarly, the SSO model can be changed to employ different procedures or search 
tactics without the need to change anything in the UAS model.  Finally, sensor characteristics 
such as range and field of view (FOV) can be changed in the UAS model without the need to 
change the SSO model.  This relative independence of components simplifies and makes more 
efficient the process of changing the overall simulation.  Later, this feature of the simulation will 
simplify the implementation of a new SSO model that reflects the performance requirements of 
the next-generation SSO UI.  
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This slide lists the key behaviors represented in the IMPRINT SSO HPM.  In the actual model, 
there are many discrete tasks that accomplish these behaviors.  The statements are generally 
self-explanatory but we would like to point out the range of behaviors that are involved.  They 
span from maintaining situation awareness, to initially detecting entities, to selecting and 
manipulating individual sensors to classify and identify targets, to using reference materials to 
aid classification and identification, to logging and reporting results.   
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HPMs generally are built to reflect the operator performance requirements associated with a 
particular system concept, especially the operator interface to the system.  The IMPRINT SSO 
model was built around the SSO UI expected for the candidate UAS.  The graphic on this slide 
illustrates the essential attributes of that interface.  It reflects typical, current-generation sensor 
interfaces in that each system component has its own interface.  There are four system components 
that present information about the current situation.  When in PPI or MMTI modes, the radar display 
(upper left portion of the graphic) shows vessels within range of, and detected by, the radar.  
Symbols such as a filled circle with a line protruding from the center might indicate moving targets, 
the direction of travel (where the line points), and speed of travel (the length of the line).  Diamonds 
might be used to indicate objects in the water that are stopped or moving slowly.  Switching the 
radar to ISAR mode and pointing it at a particular target will generate an ISAR image that can be 
used to classify the target.  The Common Operating Picture (COP, top center of graphic) is used to 
present vessels that have been classified or identified already.  It helps the SSO avoid evaluating 
the same target multiple times when that is not necessary.  The navigation display (upper right 
portion of graphic) shows the SSO where the UAS is along the predetermined search route.  The 
AIS display (lower right portion of graphic) shows vessels that are equipped with AIS.  AIS is used 
primarily by commercial vessels.  It transmits signals that identify a vessel by name, country of 
registration, heading, speed, etc.  The EO display (lower left) provides controls for pointing (or 
slewing) the lens and selecting the mode (which equates to selecting the FOV and associated 
resolution).  The lens can be pointed to a specific latitude-longitude (lat-long) coordinate set, but the 
coordinates must be entered manually.  Not all of the SSO’s interfaces are electronic:  targets are 
logged using paper and pen.  
 
The nature of this interface has significant implications for SSO job performance.  In terms of 
maintaining SA, the SSO must integrate information across four displays:  radar, COP, navigation, 
and AIS.  When new targets appear on the radar, for example, the SSO must try to correlate them 
with symbols on the COP to determine if they have been evaluated already and/or against the AIS 
because AIS-equipped vessels are a lower priority for visually classifying and identifying.  The 
navigation display provides an important reference for determining the location of vessels relative to 
the UAS by correlating landmass or other references.  In summary, maintaining SA with this UI 
requires a significant application of cognitive resources. 
 
Cross-cueing of the EO sensor is manual.  When a target of interest (TOI) is found on the radar 
display, it must be "hooked" so its lat-long can be read and then the coordinates must be manually 
typed into the EO interface before the EO sensor can be pointed at the target.  This is a time-
consuming process that also is susceptible to errors.   
 
Manual vessel logging is another time-consuming task, as is searching hardcopy reference material 
to help classify targets.  This reference material generally shows ISAR views of different vessel 
types to help the SSO distinguish identifying features in the image on his/her radar display.   
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This slide presents the top-level task network for the IMPRINT SSO HPM.  For a more detailed 
discussion of IMPRINT and the SSO model, the reader is referred to the Integrated HSI-System 
Model Demonstration annotated briefing. 
 
The high-level functions organizing SSO performance are represented in the function network of 
the model.  These are the grey rectangles.  The SSO model performs a “loop” of these activities 
which involves:  

• Maintaining situation awareness by scanning the Navigation, Radar, AIS, and COP 
• Prioritizing imaging opportunities 
• Determining the highest opportunity available given aircraft and target position 
• Employing the sensor 
• Examining the image 

 
Given what is perceived in the image, and mapping this against its mission goals and situation 
awareness, the SSO HPM may perform a number of other functions including: 

• Correlating the target 
• Accessing reference material to better classify or identify the target as a TOI 
• Marking the object on the radar display 
• Logging the target 
• Reporting the target 
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This slide presents the test matrix employed for the comparison of mission performance estimates 
provided by stand-alone CGTME and the integrated IMPRINT-CGTME (which contained the 
detailed SSO model).  There were four test conditions (two levels of simulation mode and two levels 
of scenario size).  10 data collection runs were executed in each condition. 
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This slide examines the mean number of vessels generated and detected under each test matrix 
condition. Prior to examining the mission performance outcomes, it is necessary to perform a 
cross-check to demonstrate that the test scenarios were comparable in terms of attributes 
(beyond those directly manipulated) that can affect mission performance outcomes.  For these 
tests, the key attributes were mean number of vessels generated within each scenario and the 
percentage of vessels detected under the different simulation model and size conditions.  
Significant differences in these two factors would indicate different levels of performance 
demands within conditions that could unintentionally influence the mission performance results 
obtained and lead to erroneous conclusions.  
 
The table presented verifies that the number of vessels generated under the two simulation 
modes was almost identical. The number of vessels detected also was very close across 
simulation modes.  Basically, all vessels that fell within a sensor footprint were, in fact, detected.  
This means that the number of vessels available to be classified and identified was about the 
same for the two simulations.  Analysis of Variance (ANOVA) results performed on the 20 data 
collection trials (10 trials for a 150-vessel scenario and 10 trials for a 250-vessel scenario) for 
each simulation confirm no significant difference between scenario modes.  The only significant 
difference is for scenario size (150 vs. 250 vessels), as would be expected.  Consequently, the 
results reported in the slides that follow were not skewed by differing numbers of vessels to 
detect, classify, and identify between the scenario modes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 *a P-value ≤ 0.05 is statistically significant  

16 

% VESSELS DETECTED 

Source of Variation F P-value* 

 Simulation Mode 1.53761 0.22300 

 Scenario Size 0.88962 0.35187 

 Interaction 3.46646 0.07080 

NUMBER VESSELS GENERATED 

Source of Variation F P-value* 

 Simulation Mode   0.00358  0.95263 

 Scenario Size   1373.986  <0.0001 

 Interaction   1.89287  0.17738 
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This slide presents the mean % Threats Identified, % Detected Vessels Identified, and % Detected 
Vessels Only Classified results from testing of the integrated IMPRINT-CGTME simulation with the 
IMPRINT SSO model.  Means were computed from the 10 data collection trials conducted under 
both scenario size conditions.  Means for the same measures obtained during testing with the stand-
alone CGTME simulation are provided also.  For each metric, two-way analyses of variance were 
conducted that examined effects of simulation mode (the integrated IMPRINT-CGTME simulation 
versus the stand-alone CGTME simulation) and scenario size (150 versus 250 vessels).  ANOVA 
results for the comparison on each metric are presented below.   
 

The potential mission performance exhibited with a detailed SSO model in the loop is significantly 
lower than that obtained in the stand-alone CGTME condition.  % Threats Identified is significantly 
lower in the integrated IMPRINT-CGTME simulation and also shows sensitivity to scenario size (not 
observed in stand-alone CGTME mode).  The percentage of detected vessels that are identified is 
significantly less for the integrated IMPRINT-CGTME simulation.  The percentage of vessels that are 
only classified are relatively low for both simulation modes but, again, only the integrated IMPRINT-
CGTME simulation demonstrates sensitivity to scenario size 
 

There are two main conclusions that can be drawn from these results. 
1. As regards our notional acquisition problem, when the total system is considered (i.e., a detailed 

representation of the SSO is added to the CGTME physical system representation), the result is 
a more realistic estimate of mission performance.  As indicated in the description of the notional 
acquisition problem, the PM in our story judged the performance of the complete system with 
the SSO model to be too low and directed his team to explore a next-generation SSO UI 
concept that could generate higher mission performance. 

2. In a broader sense, while simulations like CGTME can provide an efficient, effective means for 
evaluating physical system alternatives, they might not provide a good picture of the mission 
potential of the total system (that includes operators). 
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% Threats Identified  

 Source of Variation F P-value 

 Simulation Mode 42.6667 <0.0001 

 Scenario Size   2.6667 0.1112 

 Interaction  2.6667 0.1112 

% DETECTED VESSELS IDENTIFIED 

 Source of Variation F P-value 

 Simulation Mode 141.82621 <0.0001 

 Scenario Size 147.94984 <0.0001 

 Interaction      1.08702 0.30408 

% DETECTED VESSELS ONLY CLASSIFIED 

 Source of Variation F P-value 

 Simulation Mode 33.36744 <0.0001 

 Scenario Size 11.14150 0.00197 

 Interaction 10.62776 0.00244 
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The differences observed between results seen in the CGTME stand-alone and integrated HSI-CGTME modes 
can be attributed to two main factors: 

1. The level of detail at which detection, classification, and identification events are represented. 
2. The scope of SSO behaviors modeled. 

 

The tables presented in this slide provide a basis for understanding both of these factors.  The table on the left 
lists the key behaviors performed by the IMPRINT SSO HPM and the approximate mean performance times of 
each.  We say approximate mean performance times because there can be multiple paths used to accomplish 
many of these behaviors, and each path can take a different amount of time.  The table on the right lists the key 
SSO behaviors represented in stand-alone CGTME and the average performance times.    
 

Comparing the two representations of SSO performance is a bit like comparing apples and oranges, because 
the two simulations use very different approaches.  The CGTME is the simplest, so we begin there.  In 
CGTME, each detection, classification, identification, and clear event is treated as a single action.  All vessels 
falling within the footprint of a sensor used for detection, classification, or identification are given that 
categorization automatically.  Time to accomplish the event is based on a single mean and associated 
variance.  Average time to detect a vessel is 15 sec.  Average time to classify, identify, or clear a vessel is 60 
sec.   
 

The detection, classification, and identification processes are not so straightforward in the IMPRINT SSO 
model.  Target detection can involve a collection of key behaviors that might include:  examining the radar 
display to observe new tracks; then observing the AIS and COP displays to see vessels already identified; and 
then correlating the information on the radar, AIS, and COP to determine which tracks on the radar are new.  
This process can take over 160 seconds.  Vessel classification and identification can require a number of 
sensor employment events.  Evaluation of a target with the EO/IR sensor usually begins by taking entity 
coordinates from the radar and using those to initially point the sensor in the widest angle view to ensure the 
target is acquired in the sensor FOV.  Then the sensor is stepped through increasingly higher resolution modes 
until the vessel image is large enough to classify or identify.  If the range to the target is too far for the target 
size, classification is not possible and the operator model must wait to get closer to the target before trying 
again.  The classification and identification process for one vessel can range from about 1 minute (the same 
time used by CGTME) to several minutes depending upon vessel size and its position relative to the UAS flight 
path.  Thus, the level of detail used in the two simulations can lead to very different results. 
 

In terms of scope, the IMPRINT SSO HPM includes behaviors not represented by CGTME.  Checking a target 
against reference material is one of these.  This task is a routine component of the TOI classification and 
identification process.  It takes 87 seconds each time it is executed.  Also included in this list is the process of 
“hooking” vessels that have been detected so they show up on the COP.  This helps the HPM know which 
targets have been processed so time is not wasted evaluating them again.  Finally, the act of logging vessel 
status is included.  This action occurs every time new targets are detected and again when they are classified 
and identified.  Taken together, these additional behaviors require the HPM to devote significant time to 
activities not performed by CGTME.  This impacts the time available to devote to new target detection and to 
classification and identification of detected targets. 
 

Equally important, the HPM is designed to be sensitive to effects produced at the entity level through interaction 
with the mission environment and system.  In our UAS scenario, for example, the interaction of UAS speed, 
course, and sensor range relative to the speed and course of target vessels determines the length of time any 
one target is available to be classified or identified.  The SSO model processes the target vessels serially 
based on a prioritization scheme.  By the time the model gets to a vessel that was in the initial detection event, 
the vessel might have moved out of identification range or out of the sensor footprint altogether.  This is in 
contrast to CGTME which processes the vessels in a detection event as a group. 

18 UNCLAS | IMPRINT-CGTME Model: Notional Acquisition Problem | RDC | Brett et al. | Public | September 2011 



In our acquisition story, the PM, disappointed with the IMPRINT-CGTME prediction of only 67% 
of threats identified, directed the team to consider alternative interface concepts that would 
improve SSO and mission performance.  This section introduces the design concept for the next-
generation SSO user interface and presents the performance results obtained.  It also discusses 
why differences were observed between the new UI concept and the original one.  Finally, it 
discusses what this demonstration shows us in terms of the utility of human performance 
modeling.   
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This slide provides a graphical depiction of a next-generation SSO UI.  We should note that the UI in the 
graphic is incomplete:  it shows the integrated sensor display and controls, but the EO and radar would also 
have their own separate display and controls.  The display shown here integrates the sensor data from the 
EO/IR, radar, and other sources (COP, AIS), and would be the SSO’s primary display and control interface.  
 

The guiding principle in the development of this design was to integrate the SA information into one display 
element.  This is shown in the map view on the right side of the display.  The map shows the UAS (UAS 
symbol) in its current position and orientation along the ladder search route (parallel lines with blue waypoints).  
It also provides sensor rings around the UAS to help the SSO judge which targets are in range of which 
sensors:  the larger, black ring indicates radar range; the smaller, red ring indicates where the SSO can begin 
the classification and identification of vessels with the EO/IR system.  Other symbols on the map provide 
vessel information that had been scattered across multiple displays in the original SSO interface.  As would be 
seen on the radar display, symbols for MMTI (filled circles with heading and velocity vector lines) and PPI 
(diamond symbols of different sizes indicating vessel size) are incorporated directly into the map.  In this 
concept, automated processing features have been added to the radar, and MMTI and PPI symbols are color-
coded when vessels meet certain criteria (speed, size, direction of travel that the radar can determine) to alert 
the SSO to potential TOIs.  Vessels that have been classified or identified are depicted as color-coded, boat-
shaped symbols:  red "boats" are identified threats; green ones are classified vessels that are not potential 
threats; blue boat symbols are identified non-threats; and AIS vessels are shown as gray boats.  The symbols 
are interactive in that the SSO can click on a target to "hook" it.  Once hooked, information about the vessel 
appears in the table.  Also, the target is selected in the Mission Object List (see discussion below). 
 

By presenting these data in a common location and using symbol shapes and colors to differentiate states of 
detection, classification, and identification and sources of the information, the mission situation can be 
perceived much more readily by the SSO.   
 

Beyond the situation display, there are other features that support SSO performance.  Most of these 
incorporate algorithms to reduce the cognitive workload of the SSO and/or employ efficient human-computer 
interface methods to speed task performance.  For example, a target prioritization algorithm is provided that 
orders targets based on their identification states and mission priorities.  This algorithm is discussed in detail 
later in the briefing, but it is sufficient to say here that the algorithm implements the target selection portion of 
tactics the SSO had to employ cognitively in the original, low-integration UI.  The algorithm that drives the 
prioritized target list is connected to the Mission Object List depicted in the left middle of the interface.  Taken 
together, the algorithm and the Mission Object List provide a means of reducing SSO cognitive workload.  
Within the Mission Object List, the SSO can "hook" a target by selecting it from the list.  To the extent 
available, detailed information for the target is presented below in the Selected Vessel table.  The SSO can 
then cue a sensor to look at the target using the controls in the Sensors panel (bottom left).  As the 
identification process proceeds for a vessel, the SSO can update its status using pull-down menus in the 
Selected Vessel table.  Target logging has been automated  to the maximum extent possible.  The SSO simply 
clicks on the Log button.  A dialog box is presented, with the latest data for the hooked vessel already filled in.  
The SSO can add comments if desired, then save the entry.  Finally, though not depicted in the graphic, this 
SSO UI would host target reference material in an on-line format.  Rather than retrieving and paging through a 
hardcopy document, the SSO just accesses the reference material right on his/her computer. 
 
The SSO model was revised to account for performance improvements supported by high-integration UI 
concept.   
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This slide presents the top-level task network for the original IMPRINT SSO HPM.  The SSO 
model that reflects use of the new SSO UI was not built "from scratch".  It was created by 
modifying the original model.  This slide indicates the functions within which some change was 
required for the model to reflect the performance requirements of the new interface.  All but four 
functions were affected in some way. The function Correlate Across Info Sources was eliminated 
completely.  A typical change across the functions was to eliminate multiple tasks associated 
with orienting to and observing the different SA displays in the original interface and to replace 
them with two tasks:  one to orient to the integrated situation display in the new UI; and another 
task to perceive the information on the display.  Changes for tasks that remained in the model 
generally involved adjusting performance time estimates.  
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This slide lists the SSO model functions shown on the previous page and states briefly how the 
features of the high-integration UI are intended to improve SSO performance.  The purpose of 
the slide is to show that the high-integration UI design process carefully considered the full 
range of SSO function performance requirements and targeted aspects of most functions where 
performance gains could be made. 

UNCLAS | IMPRINT-CGTME Model: Notional Acquisition Problem | RDC | Brett et al. | Public | September 2011 22 



This section of the presentation discusses the simulation of the SSO’s use of the next-
generation, high-integration SSO UI concept and then compares the mission performance results 
obtained with that interface with the results obtained with the original SSO UI concept.  This 
discussion is followed by presentation and discussion of more detailed data that explain the 
performance differences observed between the two concepts. 
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The integrated IMPRINT-CGTME model was used to test whether the high-integration SSO UI had 
any effect on simulated mission performance.  This slide presents the test matrix employed for the 
comparison of mission performance estimates for the two SSO user interfaces (low level of 
integration, high level of integration ) tested.  There were four test conditions (two levels of UI 
integration and two levels of scenario size).  Ten data collection (simulation) runs were executed in 
each condition. 
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This slide examines the mean number of vessels generated and detected in each test condition.  
It verifies that the number of vessels generated under the two simulation modes were equivalent.  
The number of vessels detected also was very close across simulation modes.  Basically, all 
vessels that fell within a sensor footprint were, in fact, detected.  This means that the number of 
vessels available to be classified and identified was about the same for the two simulations.  
Consequently, the results reported in the slides that follow were not skewed by differing numbers 
of vessels.   
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This slide compares the mission performance levels enabled by the high-integration SSO UI with 
those enabled by the low-integration UI.  Across two of the three metrics (% Threats Identified 
and % Detected Vessels Identified), the high-integration SSO UI produces substantially higher 
levels of mission performance.  In the 150-vessel scenario size, it enables identification of over 
90% of threat vessels.  Under the higher-density, 250-vessel scenario condition, it identifies 87% 
of threats, surpassing the performance of the low-integration UI even in the lower-density, 150-
vessel condition.  In the 150-vessel condition, the high-integration UI enabled classification of 
61% of all vessels detected (49% identified + 12% only classified). This is in contrast to the 48% 
classified with the low-integration UI.  Performance under both UIs is affected by scenario size. 
The statistical results presented below for each metric confirm that the differences are real. 
 
 
 

 Analysis of Variance Results 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*a P-value ≤0.05 is statistically significant 
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% Threats Identified  

Source of Variation F P-value* 

 UI Integration Level 10.24921 0.00286 

 Scenario Size   3.43533 0.07202 

 Interaction   0.70978 0.40508 

% DETECTED VESSELS IDENTIFIED 

Source of Variation F P-value* 

 UI Integration Level    89.94507 <0.0001 

 Scenario Size 143.47983 <0.0001 

 Interaction     1.08899 0.30365 

% DETECTED VESSELS ONLY CLASSIFIED 

Source of Variation F P-value* 

 UI Integration Level    0.08372 0.77397 

 Scenario Size 32.90275 <0.0001 

 Interaction   3.02599 0.09048 



Insights into why the observed differences were obtained between the two UIs can be found in 
the post-run reports provided by IMPRINT for each SSO model.  This slide provides various 
metrics related to function performance by the models.  While tasks differed somewhat between 
the two, both had the same essential function structure; so this is a good point of comparison.  
The data are from one 250-vessel scenario simulation run for each model.  
 
The table on the left of the slide presents the mean performance time for each function under 
each UI condition.  Functions can execute many times during a scenario.  IMPRINT records the 
amount of time consumed during each instance of function execution and computes the mean 
across instances.  Reviewing the simulation-generated data across the functions, we see that the 
high-integration UI always executes faster than the low-integration version.  In some cases, the 
differences are substantial.  Prioritize Detection Opportunities executes about 40% faster, as 
does Check Target Against Reference Material.  Correlate Across Info Sources was eliminated 
from the model for the high-integration SSO UI because the information had been combined onto 
one display.  This is one of the more dramatic effects of the high-integration interface.  The need 
to correlate information across multiple displays (an entire function) is eliminated.  Totaling the 
means across functions provides an estimate of the time required to execute the complete 
function set once.  Doing this, we see that the high-integration model executes its function set 
about 30% faster than does the low-integration UI model. 
 
Faster function execution times would be expected to lead to more frequent function execution.  
This is confirmed in the table on the right side of the slide which presents the number of times 
each function was executed during the scenario.  Numbers are higher for the high-integration 
SSO UI across all functions with the exception of Correlate Across Info Sources.  As noted 
above, this function was not required in the high-integration UI model.   
 
Taken together, the simulation results predict that the high-integration SSO UI can enable faster, 
more efficient SSO performance, which, in turn, should lead to a higher number of detected  
vessels that are classified and identified. 
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While the function performance data from the previous slide suggest faster performance by the 
SSO model using the high-integration UI, the data above confirm it.  The table presents the 
mean time in seconds to detect, classify, and identify vessels under the two different UI 
conditions simulated.  Average time-to-detect was about the same under both UIs.  This was not 
surprising given that approximately the same percentage of all vessels in a scenario was 
detected under each UI condition.  Large differences, however, were observed regarding vessel 
classification and identification times.  The high-integration UI enabled classification times that 
were about half those of the low-integration UI.  Identification times were about 40% faster.   
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This slide presents cumulative detection, classification, and identification data taken from one 250-vessel 
scenario simulation run under each of the two UI conditions.  Runs were selected that matched the mean 
performance for each condition as closely as possible.  Referring to the chart, both UIs support about the same 
rates of detection.  The vertical "steps" seen with detections are a product of the SSO model design.  When the 
SSO model "perceives" new targets on the sensor and other displays, it notes the time, multiplies the number 
of new objects by a mean detection time with a variability factor added, and then adds the total time to detect 
the target set to the simulation time at which the task started.  This becomes the detection time for the entire 
group of new targets. 
 

Observation of scenario runs showed that both SSO models spent a lot of time early in the scenario detecting 
new targets.  This is confirmed on the chart by the rapid growth in total number of detections.  Almost 80% of 
vessel detections occurred within the first hour of the scenario.  Both models place a high priority on 
maintaining SA.  SA displays are revisited at least every 3 minutes.  It is the combined attributes of vessel  
traffic density, radar sensor range (the primary source of target detections), and UAS speed that drive the rapid 
early detection of vessels.  As the SSO models begin to perceive a group of vessels, another group appears 
before the classification and identification process can be completed on the first group.  Referring to the graph, 
it is apparent that the low-integration UI was particularly affected by the heavy target detection load.   
 

The model associated with the high-integration SSO UI exhibited more effective classification and identification 
performance early in the scenario (it was not as affected by target detection load) and throughout the 
remainder.  We assume that this was due to the faster classification times enabled by the high-integration UI.  
Comparison of the density of event points along the cumulative classification curve for the high-integration UI 
versus the low-integration UI seems to confirm this.   
 

Another interesting effect is the divergence that occurs between the classification and identification curves for 
both UIs.  A possible explanation for this is that both models place a high priority on identifying targets of 
interest (TOIs).  For any set of targets within sensor range at any one point in time, both models will devote as 
much classification and identification time as possible to TOIs to the exclusion of non-TOI vessels.  
Examination of the vessel types that were classified and identified in the first hour of the scenario revealed that 
over 60% of those vessels were TOIs and the vast majority of these were identified.  The early emphasis on 
TOI processing meant there were relatively more vessels that were not TOIs to be processed later in the 
scenario.  Also, many of these were larger vessels that were not as high a priority for establishing a positive 
identification, so the models would stop at classification.  
 

While the data provide strong insights into the factors that account for the performance differences produced 
by the two UIs, they do not account for the relatively low percentage of detected vessels that eventually are 
classified and identified.  If 160 vessels are detected in a 4-hour scenario, an average 
classification/identification time of 90 seconds is required to process the entire 160-vessel set.  In the high-
integration UI condition, classification times as low as 35.5 seconds were observed, yet the overall mean 
classification time was 215.7 seconds.  Clearly, factors other than SSO performance are involved.  In order to 
gain a complete understanding, additional data are needed that provide moment-to-moment insight into the 
complex interplay of UAS speed and route, vessel speeds and routes, sensor ranges, and SSO task 
performance times and tactics.  While we have many of these data already, the essential data that are missing 
are the points in time when the scenario vessels are within range of the UAS sensors.  Incorporating these 
data will allow us to specify the windows of opportunity for detection, classification, and identification of each 
vessel and overlay SSO model actions on those windows.  This will allow us to truly understand the mission 
performance requirements on the SSO. 
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Based on the simulation results obtained, the high-integration SSO UI offers significant mission 
performance improvement over the original, low-integration design.  Of course that conclusion is 
only as good as the implementation of the UI concept into the SSO model.  In general, more 
detailed implementations of UI operations will lead to better representations of the performance 
impacts (and gains).  Though not demonstrated in this study, model development often involves 
a round of tests and adjustments in which the modeler tweaks performance parameters based 
upon his/her understanding of human performance in the modeled context.  The act of modeling 
is instructive in and of itself with regard to understanding the human capabilities, demands, and 
effects the model must embody.  This understanding can lead to stronger UI designs as well as 
more rigorous models.  
 
Another reason for adjusting model parameters is to better understand performance bounds or 
limitations.  If model performance changes dramatically around some parameter, the modeler 
needs to be especially sure there is a sound basis for selecting the parameter values.  Because 
of the human performance is very context-dependent, it is desirable to obtain objective data on 
the performance of real humans in the context of interest.  Virtual simulators are great sources of 
this data because they generally are controlled test environments with extensive data collection.  
Observation and measurement of operators employing similar real equipment/systems can be 
useful if a simulator is not available, but obtaining these data can be difficult.  Prototyping is 
another means to gain insight into performance requirements associated with a UI.  Though 
simple and somewhat crude, a PowerPoint–based prototype of the SSO high-integration 
interface was helpful in the development of that model. 
 
As we saw in the discussion of performance results obtained from the two SSO UI models, data 
from these models provided only one piece of the puzzle.  While data from the models did 
support strong insight into factors driving the results, it did not definitively answer all questions.  
Additional data are required for that.  The important lesson here is that human systems 
integration really is focused on understanding and enabling the human in the context of the 
broader system.  To do this successfully, we need information and data on the mission 
environment and the physical system of interest, as well as the human, in order to obtain a clear 
picture of the demands the human must meet. 
 
Returning briefly to our notional acquisition problem, the PM was encouraged by the results 
obtained from the high-integration UI.  He was not, however, satisfied.  He wanted to obtain a 
threat identification rate greater than 90% in the 250-vessel scenario condition.  
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This section continues our notional acquisition problem.  After reviewing the results of testing the 
high-integration SSO UI concept, the PM has directed his team to explore a way to further boost 
mission performance.  One of his team members noted that the target prioritization scheme used 
in the high-integration UI was the same one used in the original low-integration UI.  While 
incorporating the scheme into an algorithm and using it to rank targets on the Mission Object List 
reduced cognitive workload and SSO target prioritization time, she felt that another scheme 
might improve performance.  She offered the alternative presented on the slide that follows.   
 
Beyond the notional acquisition problem, the assessment of alternative prioritization schemes 
provided here demonstrates another use for human performance modeling.  It can be used to 
explore and refine tactics, CONOPs, and other employment doctrine and elements that are 
implemented by an operator to improve mission performance.  In addition to testing the tactic, it 
also provides insight into potential impacts the tactic might have on operator performance (e.g., 
cognitive demands, workload issues, etc.).  In a broader sense, the prioritization scheme test 
also shows how relatively small elements of the overall human-system can be isolated, 
manipulated, and evaluated to exploit high-payoff, performance-enhancement opportunities 
within the system.    
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Target prioritization is the logic used to determine which target should be evaluated next.  When 
automating a target prioritization scheme, one approach is to use a point system that weights the 
factors to be considered in terms of their importance in the overall decision process. The table on 
the left side of the slide presents the scheme originally implemented in the high-integration SSO 
UI.  It instantiates the logic the SSO applied cognitively (without aiding) in the low-integration UI.  
The new alternative scheme proposed by the acquisition team member is presented in the table 
on the right.  Both tables generally consider the same factors:  target classification status, range, 
speed, length, and heading; but the new scheme adds elements or levels to some factors to 
shape the selection process in a couple of specific ways discussed below.  
 

The schemes operate as follows.  Periodically, all targets known to the system are reviewed and 
their scores are updated by the prioritization algorithm.  Known targets can be those that have 
been detected by the radar or AIS sensors or that have had some assessment by the SSO that is 
short of a positive identification (all positively-identified targets are excluded from consideration 
by the algorithm).  Points are given to a target based on matches to all factors and a total score 
is computed.  Targets are ranked from highest to lowest, based on total score and are ordered in 
the Mission Object List to reflect the ranking.  Note that there are multiple categories within the 
same factor under the new prioritization scheme.  Targets can earn points for all categories that 
apply.  A target traveling at 35 knots, for example, will earn 10 points for speed:  five points for 
going faster than 20 knots and five points for going faster than 30 knots.  
  

Both schemes are designed around the primary objective of identifying TOIs.  For example, small 
vessels traveling north at high speed will be given the highest priority under both schemes.  The 
new scheme, however, gives special attention to detected targets and targets at longer range.  
Targets within 30 NM, for example, are given points.  Additional points are applied when the 
target gets within 12 NM.  Range does not become a factor in the original scheme until a target is 
within 5 NM.  The additional criteria in the new scheme are focused on a secondary objective:  
improving maritime domain awareness by maximizing the number of vessels that are at least 
classified.  The new scheme accomplishes this objective by giving priority to detected objects 
(targets not yet classified) and targets at longer range (where they can be classified using radar).  
By explicitly looking for targets at longer ranges, the scheme has the secondary effect of 
extending the time windows within which targets can be evaluated.   
 

There is one last aspect of the schemes that should be pointed out.  AIS-equipped vessels have 
the lowest priority under both.  The reasoning is that AIS data provide a method of classifying 
targets in and of itself.  While the ideal mission outcome is that all vessels are observed by the 
SSO via radar or EO/IR, results presented previously demonstrate the difficulty of accomplishing 
this.  Hence, accepting AIS data as evidence for vessel classification becomes an expedient that 
frees SSO attention to evaluate vessels about which nothing is known.   
 

The next slide provides more detail on the types of target lists produced by the two schemes. 
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When developing prioritization schemes, it is a good idea to test the schemes on representative 
sample cases/data before actually coding the scheme and conducting data collection runs.  This 
provides an opportunity to test whether the scheme meets its design objectives without expending 
the time and cost required to implement it.  This slide demonstrates the approach to scheme 
evaluation used in this study.   It employed a four-step process: 
 

1. The different possible combinations of vessel attributes and values were specified, including:  
the types of vessels used in the test scenarios, their fixed attributes (e.g., AIS equipage, 
length), and their variable attributes that can change over the course of a scenario (speed, 
direction of travel, current classification with regard to TOI).  In specifying value combinations 
for attributes, all possible values for a factor were not specified.  Rather, values were used that 
fell within or outside a particular value range.  For example, all possible speed values (e.g., 20, 
21, 22, 23 kts ….) for a vessel type were not used.  Speed values were more likely to be 10 kts, 
25 kts, 35, kts, etc., to ensure that all possible speed factors in the prioritization scheme were 
exercised. 

2. Each of the possible combinations of vessel attributes and values was assessed according to 
the points associated with the prioritization scheme being tested.   

3. Total point values were computed for each combination, and the combinations were sorted 
from highest point value to lowest point value.   

4. The sorted lists were examined to identify the types of vessels that were at the top of the list 
and determine whether these vessel types were consistent with prioritization scheme 
objectives.  The results obtained from this step are presented on the next slide. 
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The original scheme placed a priority on identifying TOIs.  The new scheme also made 
identification of TOIs the highest objective but added an explicit second objective of classifying 
as many vessels as possible.  This meant focusing, when possible, on vessels that had been 
detected so they could be classified.  Once vessels are classified, they are either a TOI or not a 
TOI.  "Not-TOIs" were not addressed explicitly by either scheme.  Finally, and as noted earlier, 
both schemes viewed AIS vessels as the least important to be classified or identified.  
Consequently, both Not-TOIs and AIS-equipped vessels should be on the lower end of both 
prioritization schemes.   
 
The top table in the slide shows the number of possible scoring-related combinations for each of 
the four classification conditions stated above.  Note that the new prioritization scheme has more 
total combinations because it had more factors from which to create combinations.    
 
As indicated earlier, priority schemes should result in vessel types most important to the scheme 
being placed at the top of the list.  One way to test this is to determine the percentage of 
instances of each classification condition that falls above some point in the sorted list, say, above 
the median.  This is shown in the lower table in the slide.  It shows the percentage of 
combinations associated with a classification condition  whose value was greater than the 
median score for each scheme.  Consistent with the primary objective of both schemes, 100% of 
the TOI-related combinations score higher than the medians.  For the new scheme, 100% of 
detected vessels also score higher than the median.  This demonstrates that the new scheme is 
well-designed to meet its secondary objective of maximizing the number of vessels that are at 
least classified.   
 
Interestingly, the percentages of combinations related to detected vessels and Not-TOI vessels 
are virtually the same for the original scheme.  This suggests that the original scheme should not 
be expected to classify as many vessels as the new scheme (because fewer detected vessels 
will be classified under the original scheme), but could actually identify more vessels in some 
cases (because the original scheme places Not-TOIs at a higher priority than does the new 
scheme).   Finally, and as expected, AIS-equipped vessels receive the least attention from both 
schemes.  
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Implementation of the prioritization algorithm occurred quickly.  The code was associated with 
one task in the Prioritize Detection Opportunities function.  There was no need to modify CGTME 
or the IMPRINT-CGTME Link.  A couple of hours were spent designing the algorithm.  Basically, 
this consisted of implementing factor and point schemes and testing them against different 
classification status conditions until the desired target rankings were observed.  The code that 
implemented the algorithm was short and took less than an hour to write.  The code for the 
original algorithm was removed and replaced with that for the new algorithm.   
 
An important point to be made here is that even in complex test environments like the IMPRINT-
CGTME simulation, modifications to significant operator model elements often can be made very 
quickly, yielding new performance results in a day or a few days.  This allows an analysis team 
to conduct a large number of excursions from a baseline design or concept and quickly fine-tune 
the concept.   
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Once again we examine the mean number of vessels generated and detected in each test 
condition.  The numbers of vessels generated under the two simulation modes were very close, 
as were the percentage of vessels detected.  Consequently, the results reported in the slides 
that follow were not skewed by differing numbers of vessels or differences in the number of 
vessels to be classified and identified.  Also, because the means for vessels generated and 
detected are so close to values observed in prior tests, these results can be compared readily 
with the results of those previous tests.   
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This slide compares outcomes associated with the two prioritization schemes on key mission 
metrics.  Statistical analysis results are presented below.  No statistically significant differences 
are observed between the schemes under % Threats Identified, though both do exhibit 
significant effects due to scenario size.  The effect of scenario size was also observed under % 
Detected Vessels Identified, along with an absence of the effect of scheme.  Statistically 
significant effects due to prioritization scheme were found only for % Detected Vessels Only 
Classified.  This result is consistent with the secondary objective of the new scheme:  to 
maximize classifications.   
 
In summary, the prioritization scheme did have an effect on classification of detected vessels.  
Gains of about 5% (150 vessel scenario) and 10% (250 vessel scenario) were seen in detected 
vessel classifications.  Identification rates were not improved, particularly under the 250 vessel 
condition for % Threats Identified.  This was disappointing for the PM in our notional acquisition 
problem but, ever optimistic, he has sent his team back to tweak the algorithm and try again.   
 
In a broader sense, these results demonstrate that human performance modeling provides a 
good means for evaluating the potential contribution of tactics, CONOPs, and other capability 
application concepts.  To the extent that tactics and CONOPs can be considered elements of a 
complete human-system solution, the results also demonstrate that human performance models 
provide a means for manipulating individual elements to maximize overall mission performance. 
 
 
  Analysis of Variance Results 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*a P-value ≤0.05 is statistically significant 
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% Threats Identified  

Source of Variation F P-value* 
Prioritization Scheme 0.21176 0.64816 

Scenario Size 7.62353 0.00901 

Interaction 1.90588 0.17593 

% DETECTED VESSELS IDENTIFIED 

Source of Variation F P-value* 

Prioritization Scheme  0.27006 0.60647 

Scenario Size  170.95408  <0.0001 

Interaction  0.63306 0.43145 

% DETECTED VESSELS ONLY CLASSIFIED 

Source of Variation F P-value* 

Prioritization Scheme 36.84561 <0.0001 

Scenario Size      3.92764 0.05517 

Interaction      3.59566 0.06598 
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Conclusions 



This slide recaps the mission-level results of the complete study series described in this 
presentation.  The initial study compared the outcomes generated by a stand-alone CGTME 
simulation playing out a UAS counter-smuggling mission in the Florida Straits with an integrated 
IMPRINT-CGTME simulation that incorporated a detailed SSO model that controlled the sensors 
on the CGTME UAS platform.  Results from the stand-alone CGTME simulation indicated that 
the candidate UAS system could find and identify all threat vessels in both 150- and 250-vessel 
scenarios and could identify or just classify all vessels detected in either size scenario.  In our 
notional acquisition problem, these encouraging results prompted the PM to integrate a detailed 
SSO model into the simulation to determine whether the results were affected by a more 
complete representation of the system, particularly its human component.  A significant 
decrement was observed in the metric that evaluates performance of the primary mission of 
finding threat (smuggling) vessels:  % Threats Identified.  Even greater impacts were observed 
for metrics that examined performance across all vessels in the scenarios.  Further analysis 
revealed that the differences observed were due to longer and more realistic performance time 
estimates for SSO functions in the IMPRINT model compared to those used in CGTME.  In 
general, the longer function performance estimates in the IMPRINT model were due to 
specifying and representing the complete set of tasks the SSO needed to perform within the 
context of the SSO UI that was anticipated to be used.   
 
In an effort to boost SSO performance (and overall system performance), an alternative SSO UI 
concept was created and an IMPRINT model was developed that represented an SSO using it.  
Threat identification was improved dramatically, though the 87% threat detection rate in the 250-
vessel scenario remained below the PM’s desired threshold of 90%.  Classification and 
identification performance also saw substantial improvement.   
 
In the last test set, the prioritization scheme used to select targets for classification and 
identification was adjusted.  The goals of this test were to increase the percentage of threat 
vessels identified and all vessels that were at least classified.  Almost all threats were identified 
in the 150-vessel scenario condition but the percentage remained below 90% for the 250-vessel 
condition.  The secondary objective of increasing the percentage of all vessels that are classified 
was accomplished:  gains of 5% to 10% were obtained.   
 
There are a number of implications associated with these results pertaining to the use of 
modeling and simulation in the acquisition process.  These have been cited at different points in 
this presentation.  The slide that follows summarizes those implications into a combined set of 
conclusions.   
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Taken together, this test series demonstrates that traditional constructive simulations can produce 
very different expectations of mission performance than do constructive simulations that integrate 
detailed models of the human’s role.  One reason for this is that the HPMs generally are based on a 
fairly complete representation of how the operator is expected to interact with the system.  This is 
opposed to constructive simulations whose focus is more on the physical system and represents the 
operator in a very summary fashion.  The extra detail provided by the HPM generally equates to 
longer function performance times than those typically used in the stand-alone constructive 
simulation, and this affects  the integrated HPM-constructive model’s estimates of overall mission 
performance.  Equally important, the HPM is designed to be sensitive to effects produced at the 
entity level through interaction of the mission environment and system.  In our UAS scenario, for 
example, the interaction of UAS speed, course, and sensor range relative to the speed and course of 
target vessels determines the length of time any one target is available to be classified or identified.  
The SSO processes the target vessels serially based on a prioritization scheme.  By the time the 
model gets to a vessel that was in the initial detection event, the vessel might have moved out of 
identification range or out of the sensor footprint altogether.  This is in contrast to CGTME which 
processes the vessels in a detection event as a group – something a human operator could not do.   
 
While CGTME and other constructive simulations used within the acquisition process do not 
represent the operator and his/her associated effects on mission performance particularly well, 
constructive simulations are still a very important tool in the acquisition modeling and simulation 
toolbox.  They remain the fastest, most efficient means of implementing and testing physical system 
concepts.  They also provide a common computational representation of the system and mission 
environment that can be leveraged not only by HPM but by any more-detailed model of a system 
component.  For instance, engineering level sensor models can be integrated with CGTME to 
provide a more in-depth evaluation of alternative sensor products.  Later, HPM can be added that 
employs the sensor to assess usability issues.  All of these modifications can be made while 
retaining the baseline scenario and platform attributes and effects.  This enables direct comparison 
of the results of the different test events, because core system and scenario factors are held 
constant. 
 
Though not demonstrated in these tests, HPM can be used in stand-alone mode, too.  The challenge 
with stand-alone HPM is that the developer must provide some representation of the system and 
mission environment factors that drive the operator being modeled.  HPM developers often do not 
have the insight into the system and mission environment factors to do this well (like system 
engineers often do not have the human performance insights needed to model people effectively in 
their constructive simulations).  Consequently, use of stand-alone HPM generally is limited to fairly 
simple performance situations (or segments of complex situations) that are well-understood in terms 
of external demands and operator performance elements.  They also can be used to prototype 
processes and to define interaction among team members to better understand information 
communication requirements, task performance dependencies, shared situation awareness needs, 
etc. 
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The most powerful use of human performance modeling is when it is combined with a 
constructive simulation, like CGTME, to provide a complete representation of the system being 
evaluated.  It allows both the constraints and benefits associated with the specified roles, 
interface concepts, and additional employment features related to humans to be merged with 
those of the other system components so the potential of the complete system can be assessed.  
This provides the acquisition with the insight needed to pinpoint and exploit specific opportunities 
for influencing and improving overall system performance. 
 
Somewhat related to this point, use of integrated constructive-HPM simulations embeds the HSI 
team firmly within the engineering team exploring system alternatives.  This is important because 
all too often the HSI team is not involved in the early, constructive simulation events that shape 
the system.  By the time the HSI team becomes involved, decisions often have been made about 
system design that make the human’s role more difficult.  By being involved in early simulation 
events that generate objective mission and other performance data, the HSI team has a basis for 
dialoging with the rest of the engineering team about how alternative concepts affect the 
operator(s) and for offering solutions for more effectively integrating the operator(s).   
 
As seen across this test series, human performance modeling provides a means of 
systematically approaching the integration of humans into a system.  All too often, testing of 
interface and other system operation elements is subjective:  a select set of operators or 
potential operators (in the case of a new system) is presented with interface concepts and asked 
to critique them.  This “Mikey likes it”  approach does have some value:  operators need to have 
input into UI and other system element designs.  But, this approach does not provide a “total 
system” assessment, and therefore cannot identify and avoid potential mission level performance 
disappointments when the system eventually is fielded.  This often is because the UI is not 
evaluated in the context of a dynamic mission environment with all of its associated performance 
demands, e.g., time available to process targets and number of targets requiring attention within 
a limited period of time.  Because it represents the total system in the context of a dynamic 
mission scenario, the integrated constructive-HPM simulation provides a realistic representation 
of the demands placed upon the operator, the effects of which can be assessed quantitatively.   
 
Within this dynamic systems context, HPM can be applied at both macro (e.g., UI) and micro 
(e.g., prioritization scheme) levels to implement concepts and determine how they both affect 
and accommodate demands.  This ability to selectively adjust the scale of solutions that are 
tested is a benefit associated with the level of detail provided in HPM and the low level at which 
those HPM elements interact with the system and mission environment.  This allows HSI  
analysts to identify relatively small (and, perhaps, low-cost) UI elements that will produce large 
performance impacts.   
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There is a cost associated with implementing an integrated HPM-constructive simulation 
environment.  Generally, this involves creating an inter-simulation communications and timing 
management link and modifying the component simulations to interface with the link.  This was 
done for the IMPRINT-CGTME simulation.  Once that link has been created and the initial HPM 
and platform integration performed, future modifications to the HPM and other simulation 
components often can be done very rapidly and new test results obtained quickly.  This enables 
rapid evolution of operator UI concepts towards an effective solution.   
 
Inevitably, there will be UI concepts, tactics, etc. that, when simulated, fail to meet performance 
requirements.  Because of the nature of constructive simulation, these failures can be discarded, 
insights from the failure noted, and new alternatives proposed and tested rapidly and at relatively 
low cost.  The idea is to fail early, when it does not cost much, and to use the knowledge and 
experience gained to keep improving the design of the human-system interface until we are sure 
we have an effective solution.  This will help avoid the situation that occurs all too often in system 
acquisitions:  we buy and field a system only to learn that it is difficult for our people to use, does 
not generate the performance we had hoped for, and is going to cost a lot of money to fix.  
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AIS automatic identification system 
ANOVA analysis of variance 
CGTME Coast Guard Tactical Modeling Environment   
CONOP concept of operations 
COP common operating picture 
COTS commercial-off-the-shelf 
CTS Core Tool Suite (as in GCAM-CTS) 
EO electro-optical (sensor) 
FOV field of view 
ft feet 
GCAM General Campaign Analysis Model 
HPM human performance model 
HSI human systems integration 
IMPRINT Improved Performance Research Integration Tool 
IR infrared (sensor) 
ISAR inverse synthetic aperture radar 
kts knots 
MALE medium altitude long endurance (type of UAS) 
MDA maritime domain awareness 
MMTI maritime moving target indicator (radar mode) 
MOE measure of effectiveness 
NM nautical mile 
PM Program Manager 
PPI plan position indicator (radar mode) 
RDC USCG Research & Development Center 
SA situation awareness  
SDCIP surveillance, detection, classification, identification, and prosecution 
sec seconds 
SME subject matter expert 
SPA Systems Planning and Analysis 
SSO sensor systems operator 
TOI target of interest 
UAS unmanned aerial system 
UDI unique deliverable identifier (RDC report number) 
UI user interface 
USCG United States Coast Guard 
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